Singularities in a Modiied Kuramoto-sivashinsky Equation Describing Interface Motion for Phase Transition

نویسندگان

  • Andrew J. Berno
  • Andrea L. Bertozzi
چکیده

Phase transitions can be modeled by the motion of an interface between two locally stable phases. A modiied Kuramoto-Sivashinsky equation, h t + r 2 h + r 4 h = (1 ?)jrhj 2 (r 2 h) 2 + (h xx h yy ? h 2 xy); describes near planar interfaces which are marginally long-wave unstable. We study the question of nite-time singularity formation in this equation in one and two space dimensions on a periodic domain. Such singularity formation does not occur in the Kuramoto-Sivashinsky equation (= 0). For all 1 > 0 we provide suucient conditions on the initial data and size of the domain to guarantee a nite-time blow up in which a second derivative of h becomes unbounded. Using a bifurcation theory analysis, we show a parallel between the stability of steady periodic solutions and the question of nite-time blow up in one dimension. Finally, we consider the local structure of the blow up in the one-dimensional case via similarity solutions and numerical simulations that employ a dynamically adaptive self-similar grid. The simulations resolve the singularity to over 25 decades in jh xx j L 1 and indicate that the singularities are all locally described by a unique self-similar proole in h xx. We discuss the relevance of these observations to the full intrinsic equations of motion and the associated physics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singularities in a modified Kuramoto-Sivashinsky equation describing interface motion for phase transition

Phase transitions can be modeled by the motion of an interface between two locally stable phases. A modified Kuramoto-Sivashinsky equation, h, + 72h + Wh = (1 a)lVhl ~ ± X(V~h): + ~A(hx~hyy h~y) , describes near planar interfaces which are marginally long-wave unstable. We study the question of finite-time singularity formation in this equation in one and two space dimensions on a periodic doma...

متن کامل

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

Study of the noise-induced transition and the exploration of the phase space for the Kuramoto–Sivashinsky equation using the minimum action method

Noise-induced transition in the solutions of the Kuramoto–Sivashinsky (K–S) equation is investigated using the minimum action method derived from the large deviation theory. This is then used as a starting point for exploring the configuration space of the K–S equation. The particular example considered here is the transition between a stable fixed point and a stable travelling wave. Five saddl...

متن کامل

Application of Daubechies wavelets for solving Kuramoto-Sivashinsky‎ type equations

We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition‎. ‎Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method‎. ‎The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method‎.    

متن کامل

Viscous Shocks in the Destabilized Kuramoto-Sivashinsky Equation

We study stationary periodic solutions of the Kuramoto-Sivashinsky (KS) model for complex spatiotemporal dynamics in the presence of an additional linear destabilizing term. In particular, we show the phase space origins of the previously observed stationary “viscous shocks” and related solutions. These arise in a reversible four-dimensional dynamical system as perturbed heteroclinic connection...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994